

REFERENCES

- [1] R. F. Harrington, *Time Harmonic Electromagnetic Fields*. New York: McGraw-Hill, 1961, p. 53.
- [2] R. E. Collin and F. J. Zucker, *Antenna Theory*, Part 1. New York: McGraw-Hill, 1969, pp. 18-19.
- [3] D. Mirshekar-Syahkal, "Accurate solution of microstrip and coplanar structures for dispersion and for dielectric and conductor losses," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-27, pp. 694-699, July 1979.
- [4] A. Gopinath, R. Horton, and B. Easter, "Microstrip loss calculations," *Electron. Lett.*, vol. 6, no. 2, pp. 40-41, Jan. 1970.
- [5] R. Horton, "Loss calculations of coupled microstrip lines," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-21, pp. 359-360, May 1973.
- [6] B. E. Spielmann, "Dissipation loss effects in isolated and coupled transmission lines," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-25, pp. 648-656, Aug. 1977.
- [7] R. H. Jansen, "High speed computation of single and coupled microstrip parameters including dispersion, high-order modes, loss and finite strip thickness," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-26, pp. 75-82, Feb. 1978.

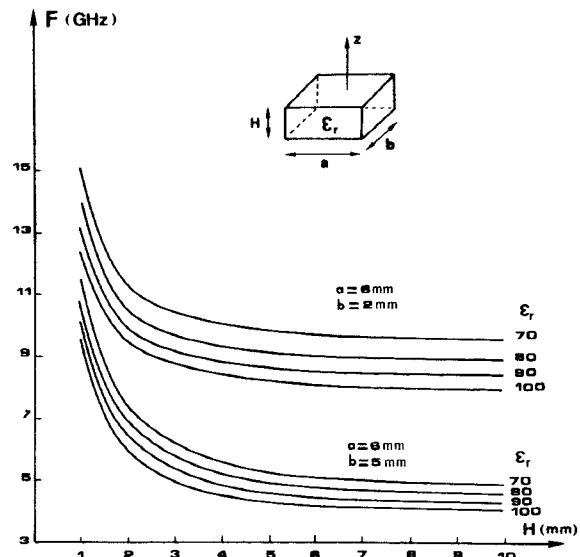


Fig. 1. Resonant frequencies of the TE_{11p} mode of an isolated rectangular resonator.

Correction to "Accurate Resonant Frequencies of Dielectric Resonators"

P. GUILLOU, Y. GARAUDET, AND J. CITERNE

After a study (ATP 2365 of the French CNRS) we have detected an error in Fig. 11 of the above paper.¹ In fact, it is necessary to replace the curves of this figure by those presented here.

This modification is necessitated because of the bad initialization of the computer program which gives a wrong result for resonant frequency of the TE_{11p} mode of the rectangular dielectric resonator.

However, this error has no effect on the validity of the method presented in the above paper.¹ To verify this we present in Table I, theoretical and experimental results obtained by using a rectangular resonator of permittivity $\epsilon_r = 36$. There is a good agreement between measured (f_e) and calculated (f_t) resonant frequencies of magnetic dipolar (TE_{11p}) mode.

Manuscript received November 15, 1979.

P. Guillon and Y. Garault are with L.E.M. ERA CRNS 535 U.E.R. Sciences-123, rue A. Thomas, 87060, Limoges Cedex, France.

J. Citerne is with C.H.S. LA CRNS 287, Université de Lille 1, 59650 Villeneuve D'Ascq, France.

¹P. Guillon and Y. Garault, "Accurate resonant frequencies of dielectric resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-26, p. 916, Nov. 1977.

TABLE I
RESONANT FREQUENCY OF THE TE_{11p} MODE OF DIELECTRIC ($\epsilon_r = 36$)
RECTANGULAR RESONATOR OF CROSS SECTION ($a = 6$ mm, $b = 5$ mm)

H (mm)	7,96	6	4,1	2,2
f_t (MHz)	6866	7110	7770	9680
f_e (MHz)	6730	7010	7728	9460
accuracy : $\frac{f_t - f_e}{f_t}$ in percent	2	1,5	0,6	2

We can also note that such a disagreement does not exist with the circular shape, also investigated in the above paper¹ and for which the initialization of the computer program is good.

ACKNOWLEDGMENT

The authors thank Mr. Simonet and Mage of Laboratoire central de Recherche, Thomson CSF, Corbeville, France, who have supplied the dielectric resonators.